

B.Tech - Even Sem : End Semester Exam Academic Year:2021-2022 18EE4141 - BATTERY STATES ESTIMATION

-		_	larks: 10		Т
Time:	Answer All Questions	777	Options	Marks	С
S.NO	Determine SOC from stoichiometry and prove that it cannot be easily determined from battery chemistry.	choice Q-2	, a sile	10Marks	
:	Briefly explain the current based SOC estimation method and support why it is termed as poor estimation method.	1	1,1-	10Mark	s
. ,		choice Q-4	1.44	15Mark	s
	Answer the following questions	1 3411	- 3-33	8Marks	1
Α.	Illustrate how the performance of Electric vehicle gets effected by accurate estimation of battery SOC. Consider random variable X having Gaussian distribution with mean of 3 and variance of 4, random variable Y having Consider random variable X=2X+3Y. Determine i) Expected value		7-1	7Marks	
В.	Consider random variable X having Gaussian distribution with mean of 3 and variance of 3, India variable X having Gaussian distribution with mean of -1 and variance of 9. Consider random variable Z=2X+3Y. Determine i) Expected value of Z ii) Covariance of Z iii) If X and Y are uncorrelated determine expected value of Z conditioned upon X=1	17.4	Yalli V	15Marks	5 0
,	Answer the following questions			8Marks	1
Α.	Identify the condition for random variables to be called as independent and uncorrelated		-	7Marks	1
В.	Elaborate in detail the steps for solution of state estimation using sequential probabilistic inference	choice			+
	Apply various matrix factorization methods we follow to generate correlated random vectors using octave code.	Q-6	100	10Marks 10Marks	L
	Derive the prediction step of Kalman filter and Analyze the effect of each parameter on the estimation of state variable	choice		10Marks 15Marks	t
i ,	Answer the following questions	Q-8	4		╀
Α.	Describe the following terms with their symbols i) Predicted value of state variable ii) Estimated value of state variable iii) Predicted error of state variable	irt i	e in	8Marks	9
, ,	Develop code in octave for step-2 of Kalman filter algorithm applied to the system given below with zero initial conditions				
	$\Sigma_{\widetilde{w}} = \Sigma_{\widetilde{v}} = 1$			Mada	c
В.	$x_k = x_{k-1} + u_{k-1} + w_{k-1}$			7Marks	,
	$y_k = x_k + v_k$	27 - 1			
	Answer the following questions			5Marks	(
Α.	For the given cell model identify the input and output variable and model matrices. Consider Ro=0.01, Q=100000/3600. $z_{k+1} = 1 \cdot z_k - \frac{1}{3600 \cdot Q} i_k$ $\text{Volt}_k = 3.5 + 0.7 \times z_k - R_0 i_k$			8Marks	C
. 2 	For the given cell model		e (Ha		
	$z_{k+1} = 1 \cdot z_k - \frac{1}{3600 \cdot Q} i_k$				
3.	$volt_k = 3.5 + 0.7 \times z_k - R_0 i_k$	er hijn		7Marks	9
- 1	$\sum_{\widetilde{W}} = \sum_{\widetilde{V}} = 1, \hat{X}_0^+ = 0.5, \sum_{\widetilde{X},0}^+ = 0$	ne) la			
	Select any value of input and output values falling the range given Current 0.5< i<1 and voltage 3.5 <v<sub>k<4. Determine \hat{x}_1^+, \hat{x}_2^+</v<sub>	3 - 3 m			
	Identify the cause of loss of symmetry of covariance and the procedure to deal with it so that robustness of Kalman Algorithm is improved?	choice Q-10		10Marks	(
_	Apply EKF to determine the correction steps of state estimation solution for non-linear systems	1 4		0Marks	(
\neg	Answer the following questions	choice Q-12		5Marks	C
\. I	Explain in which process the numeric robustness of Kalman filter tested?	\ <u>-</u>	1	Marks	C
	Develop Wrapper code (load data, store in local variables) in Octave for implementing EKF for ESC model.	7 7	_		C
7	Answer the following questions		_		$\frac{1}{c}$
	Enumerate the different techniques for estimating the state of charge (SOC) of non-linear system.				$\frac{c}{c}$
A. 11					_